<small id="mxhh4"><thead id="mxhh4"></thead></small><tt id="mxhh4"><menu id="mxhh4"></menu></tt>
    1. <blockquote id="mxhh4"></blockquote>
    2. <blockquote id="mxhh4"></blockquote>

    3. 首頁 > Saccharomyces
      全部論文
      電力論文   |   建筑論文  |  機械論文  |  化工論文  |  石油論文  |  冶金論文  |  礦產論文  |  材料論文  |  電子論文  |  航空航天論文  |  通信論文  |  計算機論文  |  水利論文  |  地質論文  |  鐵道論文  |  汽車論文  |  管理論文  |  農業論文  |  食品論文  |  醫學論文  |  海洋論文  |  船舶論文
      • Fermentation of xylose to produce ethanol by recombinant Saccharomyces cerevisiae strain containing

        Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield....

        2020-10-22 17:35:41瀏覽:21 xyloseisomerasexylulokinaseco-expressionethanolSaccharomyces

        查看
      • Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri

        Furfural is an important inhibitor in ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In order to find out the furfural concentration range in which furfural inhibits the fermentation process, we used one strain Saccharomyces kluyveri selected from soil and cultured in several different furfural content media under low glucose concentration condition. Experiment results show that microorganism growth was stimulated and dry cell weight decreased when furfural concentration in the medium was 0.25 mg/ml. Furfural had negative effect on cell growth when its concentration was above 1.00 mg/ml. At the same time, the strain growed better and had higher glucose consumption rate in 5% original glucose concentration condition than in 3% original glucose concentration condition. The results show that appropriate exaltation of original glucose concentration in stalk hydrolysates will increase the strain resistance to furfural....

        2020-10-22 17:35:41瀏覽:20 furfuralconcentrationSaccharomyceskluyverifermentationgrowthethanolyield

        查看
      • 通過抑制釀酒酵母乙醇發酵中的甘油產率提高乙醇產率

        In ethanol fermentation of Saccharomyces cerevisiae (S.cerevisiae),glycerol is one of t11e main by-products.The purpose of this investigation was to increase ethanol yield through minimizing glycerol yield by using mutants in which FPSl encoding a channel protein that mediates glycerol export and GPD2 encoding one of glycerol-3-phosphate dehydrogenase were knocked-out using one-step gene replacement.GLTl and GLNl that encode glutamate synthase and glutamine synthetase,respectively,were overexpressed using two-step gene replacement in fps1△Agpd2△ mutant.The fermentation properties of ZAL69(fps1△::JLEU2 gpd2△::URA3)and ZAL808(fps1△::LEU2 gpd2△::URA3 PPGKI-GL71 PPGKI-GLNI)under microaerobic conditions were investigated and compared with those of wild type(DC124).Consumption of glucose,yield of ethanol,yield of glycerol,acetic acid,and pyruvic acid were monitored.Compared with wild type.the ethanol yield of ZAL69 and ZAL808 were improved by 13.17%and 6.66%,respectively,whereas glycerol yield decreased by 37.4%and 41.7%.Meanwhile,acetic acid yield and pyruvic acid yield decreased dramatically compared to wild type.Our results indicate that FPS1 and GPD2 deletion of S.cerevisiae resulted in reduced glycerol yield and increased ethanol yield.but simultaneous overexpression of GLTl and GLN1-in fps1△gpd2△ mutant did not have a higher ethanol yield thall fps1△gpd2△ mutant....

        2020-06-12 15:10:22瀏覽:1385 Saccharomycescerevisiaeethanolyieldglycerolgeneknock-out

        查看
      • 通過抑制釀酒酵母乙醇發酵中的甘油產率提高乙醇產率

        In ethanol fermentation of Saccharomyces cerevisiae (S.cerevisiae),glycerol is one of t11e main by-products.The purpose of this investigation was to increase ethanol yield through minimizing glycerol yield by using mutants in which FPSl encoding a channel protein that mediates glycerol export and GPD2 encoding one of glycerol-3-phosphate dehydrogenase were knocked-out using one-step gene replacement.GLTl and GLNl that encode glutamate synthase and glutamine synthetase,respectively,were overexpressed using two-step gene replacement in fps1△Agpd2△ mutant.The fermentation properties of ZAL69(fps1△::JLEU2 gpd2△::URA3)and ZAL808(fps1△::LEU2 gpd2△::URA3 PPGKI-GL71 PPGKI-GLNI)under microaerobic conditions were investigated and compared with those of wild type(DC124).Consumption of glucose,yield of ethanol,yield of glycerol,acetic acid,and pyruvic acid were monitored.Compared with wild type.the ethanol yield of ZAL69 and ZAL808 were improved by 13.17%and 6.66%,respectively,whereas glycerol yield decreased by 37.4%and 41.7%.Meanwhile,acetic acid yield and pyruvic acid yield decreased dramatically compared to wild type.Our results indicate that FPS1 and GPD2 deletion of S.cerevisiae resulted in reduced glycerol yield and increased ethanol yield.but simultaneous overexpression of GLTl and GLN1-in fps1△gpd2△ mutant did not have a higher ethanol yield thall fps1△gpd2△ mutant....

        2020-03-23 18:18:47瀏覽:1394 Saccharomycescerevisiaeethanolyieldglycerolgeneknock-out

        查看

      能化大數據平臺 ©2010-2022 All Rights Reserved.  
      滬ICP備14007155號-3 網站地圖 化工熱詞舊版本
      關于我們| 會員說明| 廣告合作| 聯系我們| 免責聲明| 投稿須知|

      能源化工大數據平臺-煤化工網二維碼
      在線客服
      服務郵箱

      服務郵箱

      cnmhg168@163.com

      微信咨詢
      微信
      返回頂部
      X我的網站名稱

      截屏,微信識別二維碼

      微信號:anquanhun

      (點擊微信號復制,添加好友)

        打開微信

      微信號已復制,請打開微信添加咨詢詳情!
      [!--page.stats--] 被公玩弄的年轻人妻

      <small id="mxhh4"><thead id="mxhh4"></thead></small><tt id="mxhh4"><menu id="mxhh4"></menu></tt>
        1. <blockquote id="mxhh4"></blockquote>
        2. <blockquote id="mxhh4"></blockquote>